MKlp2 inhibitior paprotrain affects polar body extrusion during mouse oocyte maturation

نویسندگان

  • Jun Liu
  • Qiao-Chu Wang
  • Xiang-Shun Cui
  • Zhen-Bo Wang
  • Nam-Hyung Kim
  • Shao-Chen Sun
چکیده

BACKGROUND Mammalian oocyte meiotic maturation involves a number of important processes, including spindle assembly and migration, cortical reorganization and polar body extrusion. Numerous proteins contribute to these processes, but it is unknown whether MKlp2 (mitotic kinesin-like protein 2; also called KIF20A), a microtubule-associated protein that regulates cytokinesis during mitosis, is involved in oocyte maturation. METHODS Confocal microscopy, time lapse microscopy, inhibitor treatment were adopted to examine the roles of MKlp2 in mouse oocyte. RESULTS Immunostaining results showed that MKlp2 localized to oocyte microtubules. Time-lapse microscopy showed that disrupting MKlp2 expression with paprotrain, a specific inhibitor of MKlp2, resulted in polar body extrusion failure. This could be rescued after rescuing oocytes from paprotrain in fresh medium. Cell cycle analysis showed that most oocytes were arrested at metaphase I or telophase I. However, oocyte spindle structure and chromosome alignment were not disrupted after the inhibition of MKlp2 by paprotrain. CONCLUSIONS This study demonstrated that MKlp2 is crucial for oocyte maturation by regulating polar body extrusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KIF20A Regulates Porcine Oocyte Maturation and Early Embryo Development

KIF20A (Kinesin-like family member 20A), also called mitotic kinesin-like proteins 2 (MKLP2), is a mammalian mitotic kinesin-like motor protein of the Kinesin superfamily proteins (KIFs), which was originally involved in Golgi apparatus dynamics and thought to essential for cell cycle regulation during successful cytokinesis. In the present study, we investigated whether KIF20A has roles on por...

متن کامل

Actin-capping proteins play essential roles in the asymmetric division of maturing mouse oocytes.

Actin polymerization is essential for various stages of mammalian oocyte maturation, including spindle migration, actin cap formation, polar body extrusion and cytokinesis. The heterodimeric actin-capping protein is an essential element of the actin cytoskeleton. It binds to the fast-growing (barbed) ends of actin filaments and plays essential roles in various actin-mediated cellular processes....

متن کامل

Txndc9 Is Required for Meiotic Maturation of Mouse Oocytes

Txndc9 (thioredoxin domain containing protein 9) has been shown to be involved in mammalian mitosis; however, its function in mammalian oocyte meiosis remains unclear. In this study, we initially found that Txndc9 is expressed during meiotic maturation of mouse oocytes and higher expression of Txndc9 mRNA and protein occurred in germinal vesicle (GV) stage. By using confocal scanning, we observ...

متن کامل

WASH complex regulates Arp2/3 complex for actin-based polar body extrusion in mouse oocytes

Prior to their fertilization, oocytes undergo asymmetric division, which is regulated by actin filaments. Recently, WASH complex were identified as actin nucleation promoting factors (NPF) that activated Arp2/3 complex. However, the roles of WASH complex remain uncertain, particularly for oocyte polarization and asymmetric division. Here, we examined the functions of two important subunits of a...

متن کامل

The small GTPase CDC42 regulates actin dynamics during porcine oocyte maturation

The mammalian oocyte undergoes an asymmetric division during meiotic maturation, producing a small polar body and a haploid gamete. This process involves the dynamics of actin filaments, and the guanosine triphosphatase (GTPase) protein superfamily is a major regulator of actin assembly. In the present study, the small GTPase CDC42 was shown to participate in the meiotic maturation of porcine o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2013